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Abstract

The evaluation of transmission efficiency of structural junctions forms an important part
in the study of structure-borne noise as it provides the basis for identifying and
quantifying the vibration paths in the structure. In this report, analytical methods for
evaluating the transmission efficiency of structural junctions including plate-plate and
plate-beam junction are described. The calculation of coupling loss factor from the
transmission efficiency of a junction for Statistical Energy Analysis (SEA) is also
described. Sample calculations of transmission efficiencies on a number of structural
junctions are presented. It is found that for typical naval ship constructions that consist
of plates coupled to light thin beams, the elastic vibrations of the beams have a significant
effect on the transmission efficiency.
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The Evaluation of Transmission
Efficiency and Coupling Loss Factor of

Structural Junctions

1. Introduction

One of the limiting factors in the analysis of vibration transmission through
complex structures, such as naval ships, is the transmission across junctions and
discontinuities in the structure where vibration waves are partially reflected and
partially transmitted. The wave transmission properties of a structural
discontinuity may be characterised by the transmission efficiency which is defined
as the ratio between the transmitted wave power and the incident wave power.
The transmission efficiency is an important parameter in the study of structure-
borne noise since it provides the basis to identify and quantify the vibration paths
in the structure. This information enables appropriate vibration control
techniques to be applied. The transmission efficiency may also be used to
calculate the coupling loss factor for Statistical Energy Analysis (SEA). SEA is a
very useful technique for analysing the average vibration levels of complex
interconnecting elements, such as ship structures, especially at high frequencies.

One of the early attempts to evaluate the transmission efficiency was carried out
by Cremer (1948). His work included right-angled plate junctions subjected to
oblique incident bending waves. Other authors (Wohle et al., 1981; Craven and
Gibbs, 1981; and Langley and Heron, 1990) have extended the analysis to include
longitudinal and transverse shear waves. The contribution of these vibration
waves to structure-borne noise has been investigated by Lyon (1986). In the
previous studies involving transmission efficiency of plate-beam structures, the
stiffening beam was modelled by using conventional beam theory and the effect of
beam vibration was neglected. While this so called "blocking mass" approach
might be valid for thick heavy beams, there are situations where elastic vibrations
of the beam have to be considered. For example, in plate-beam structures typical
of ship constructions, the web thickness may be of the same order as the plate and
hence the effect of web vibration has to be accounted for in the evaluation of
transmission efficiency.
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In this report, analytical methods for evaluating the transmission efficiency of
structural junctions typical of those found in ship constructions are described.
The effect of elastic vibrations of the beam in a plate-beam junction is investigated
by modelling the beam as a finite plate coupled to a system of semi-infinite
plates. Samples of calculations for a number of junctions are presented.

2. Modelling the Structural Junctions

2.1 Mathematical Expression for Vibration Waves

Figure I shows a schematic diagram of plate-plate junction which consists of n
plates coupled along a line. The plates are assumed to be infinite along the y and
x1 to x. directions. It is further assumed that the plates are thin so that the
boundary conditions can be applied on the plate centreline. Plate 1 is subjected to
an oblique incident wave which can be either bending (B), longitudinal (L) or
transverse shear (T). The incident wave is partially reflected and partially
transmitted at the junction as bending, longitudinal and transverse shear waves as
shown. To study the mechanism of wave transmission at a junction, it is
convenient, as a first step, to consider the elastic deformations due to these
reflected or transmitted waves in an arbitrary plate. Figure 2 shows the plate
deformations u, v and w along a set of local co-ordinates x, y and z respectively.
Using thin isotropic plate theory, the following governing equations of motion for
plate deformations may be derived (see Love, 1927, p496).

The bending wave equation being:

[1V4w+2p(1-g2 )/Eh2'] 2 w/ t2 =0, (1)

and the in-plane wave equations are:

i
2 u//x 2 +[(l-pt)/ 2]a 2u/ay 2 +[(l + p)/ 21a 2 v / Mxy-[p(1-I_ 2 )/EJ• 2v/ at 2 =0,

(2)

a2 v/Cy 2 +[(1-g)/2]a 2v/ ax 2 +[(1 +g)/2J]2 u/x y-I[p(l -IA2 )/E]a 2u//t 2 =0,

(3)

whereV 4 =[a 2 /ax2 +a 2 /4y 2 2 ,

p = material density,
g = Poisson's ratio,
h = plate thickness,
E = Young's modulus.

JiS



Xn.•

Y

IB

•1 " Incident wave

T OE -. 1_
SB Reflected/X

Transmitted 
T Lr waves

reflcte wae

• B - Bending

L - Longitudinal
T"- Transverse shear

X2

Figure 1: Schematic diagram of a plate-plate junction.
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Figure 2: Co-ordinate system of an arbitrary plate showing transmitted/reflected waes,

plate displacements and junction forces and moment.
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The in-plane wave equations are functions of the plate deformations u and v. To

obtain a solution for these equations, one can make use of the velocity potential*
and stream function V defined as follows (a detailed discussion on the use of
velocity potential and stream function to analyse vibration waves is given by
Cremer et al., 1988, p 138):

u = -aýl ax~ l,(4)

v = -/+ /ax. (5)

Using equations (4) and (5), each of the in-plane wave equations is reduced to a
function of one dependent variable (* or iV) only:

V20-[p(l-A 2 )/ E]La2O/at 2 =0, (6)

V2 'P-[2p(+jU)/fE]a 2 • /at 2 =0. (7)

The general solutions to equations (1), (6) and (7) may be expressed as:

w = W exp (kBX x + kBy+joat), (8)

4 = P exp (k. + kLyY + j(t), (9)

y = TP exp (kTr x + kTYy + joet). (10)

The velocity potential 0 is associated with longitudinal waves while the stream
function W with transverse shear waves. For the solutions to be valid, the
following conditions must be satisfied (these conditions can be obtained by
substituting equations (8), (9) and (10) into equations (1), (6) and (7) respectively):

-(ka2 +k' k)=+1l2pwa2 (1-p2 )/Eh2 ]•2 = +k2, (11)

-(ku +k2 )=[pC02(l- 2)/E]=kL, (12)

-(k2 +k2 ) = [2p2(1+)/El= k2, (13)

where kB, kL and kT are the bending, longitudinal and transverse shear wave
numbers respectively. Snell's law states that the trace velocity of all wave types at
the junction must be the same. This implies that the y - component of wave
numbers (i.e. k.., kL, and kr.) for the reflected and transmitted waves of all plates
must be the same as that of the incident wave. The x - component of wave
numbers may be determined from equations (11) - (13). For bending waves,
equation (11) yields four roots, the negative imaginary root and the negative real
root must be selected since they represent propagating and decaying waves
respectively in the positive x - direction (i.e. away from the junction). Similarly,
the solutions for longitudinal and transverse shear waves must be negative
imaginary. Equations (4), (5) and (8)-(10) give the elastic deformations of the
plate, u, v and w. By expressing the x and y - components of wave numbers in
terms of the reflection/transmission angles y., 1L and yr, the plate deformations
may be written as:

10



u =[jkL0coSTL exp(-jkLXCoSyL )-jk•'Psin yr exp(-jkTxcosyT )]

exp(ky + j4),
(14)

v = [-jkL~sinyL exp(-jkLxcosTL )- jkr'PcosyT exp(-jkTXcosyT )]

exp(kvy + im)),
(15)

w = {W, exp(-jkx cos y8 ) + W2 exp[ -kB.x,(1 + sin 2 y7)1) exp(kyy + jo)t), (16)

where k. is the y - component of incident wave number. The last exponential
factor on the right hand side of the above equations represents the y - direction
dependency and time dependency of the displacement amplitudes. These factors
are exactly the same for all wave types and will be omitted in the subsequent
expressions for simplicity. The reflection/transmission angles may be expressed
in terms of the incident angle using the Snells law as discussed earlier:

k. sin y. = kL sin yL = kT sin YT = k sin a, (17)

where cx is the incident angle and k is the incident wave number. Note that the
incident wave can be either bending, longitudinal or transverse shear. Equations
(14) - (16) can be further simplified by introducing the complex wave
displacement amplitudes defined as follows:

4B = W1, 4BN = W2, (18), (19)

4L = jkL 4>, 'T = jkT TP, (20), (21)

4B and OBN represents the complex wave amplitudes of the travelling and decaying
bending waves respectively while 4L and 4T denote the amplitudes of the
longitudinal and transverse shear waves. Using equations (17) - (21), the plate
deformations may be expressed as:

u = 4L RL /(kL / k)]exp(-jkRLx)- .4 [sin a/(kT / k)lexp(-jkRTx), (22)

v = -4L [sin c / (kL / k)]exp(-jkR LX)-r I RT / (kT /k)Jexp(-jkRrx), (23)

w = k. exp(- jkRgx) + 4gN exp(-kRONX), (24)

where RD = 41(kA•) 2-sin2kl, (25)

D = B, L or T depending on the wave type,

RaN = q[(ko /k) 2 + sin2ct]. (26)

In equation (25), if the quantity inside the square root is negative, the exponential
term representing the travelling wave in the wave equations becomes a real
quantity and wave propagation cannot exist. One must then replace the quantity
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'J[(k,,•)2-sin2t] by -.t[sin2a -(kjk)2] in the solution of wave amplitudes. For plate
1, the deformations must also include the components of incident wave. The
elastic deformations due to the incident wave may be obtained in a similar
manner as that of the reflected/transmitted waves. The only difference being that
the positive imaginary solution of the wave numbers in equations (11) - (13) must
be selected since the incident wave propagates towards the junction. For the
purpose of evaluating the transmission efficiency, the incident wave may be
considered as having a unit amplitude. Hence, for an incident bending wave, the
elastic deformation is:

t 8 = exp (j k x cos a), (27)

for a longitudinal wave,

uL - cos Oa exp (jkLX COS 0)01 (28)

vL- -sin a [exp (jkL x cos )], (29)

and for a transverse shear wave,

uT = - sin cc [exp (j kT x cos a)], (30)

vT = cos a [exp (j kT x cos a)]. (31)

Superscripts B, L and T denote the type of incident wave. If follows from the
above analysis that the elastic deformations of each plate in the junction are
expressed in terms of four unknowns representing the complex wave amplitudes,
namely, the amplitudes for longitudinal and transverse shear waves, as well as
the travelling and decaying bending waves. Hence, in a junction that consists of it
coupled plates, there are 4n unknowns to describe the wave motion. These
unknowns may be solved by the appropriate boundary conditions.

2.2 Boundary conditions

2.2.1 Plate-plate junction

To consider the boundary conditions at a junction, it is convenient to introduce
the subscript i to denote the plate number (i = 1, 2,...n). The compatibility of plate
motions requires that the displacement components of all plates along a set of
reference co-ordinates (e.g. x,, y and z,) at the junction must be the same. In
addition, the rotation about the y axis of all plates should be equal. The plate
rotation is given by:

61 = o,/lck. (32)

The displacement components of all plates (u• vi and w,) due to bending,
longitudinal and transverse shear waves are given by equations (22) - (24). For
plate 1, the displacements must also include components of the appropriate
incident wave as given by equations (27) - (31). Resolving the displacements of
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plate I along co-ordinates x,, y and zi leads to the following compatibility
equation:

n
Ui cosI31 , O, -sini , 0 u

V3  0 ,1, 0 , 0 V(

u, sinp,, 0, cosJp, , 0 w1

i 1 0 ,0 0 1 01

i=2

where { angle between plate i and plate 1.

For thin isotropic plates, the forces and moment per unit length of plate (along
the y - direction) may be expressed as (see Leissa, 1969, p 336):

Fzi =-[Eih, /(-Ii2)][aui/ axi +o, ivI /a 1Y, (34)

Fyi =-Eihi / 2(1 +l~ )][aui/• + av, / axi ],(35)

Fj= [Eihi3 /12(1-gi±2 )][a 3w,/lx, 3 +(2-.i )a3 w, /axiay 2 ] (36)

Mi = _[Eihi 3 /12(1_11i2 )][a2Wi /ax i2 +Aji a2w, /ay2 ].(37)

Note that equation (36) represents the effective edge force which consists of the
shear force plus the effect of twisting moment (see Leissa, 1969, p 338 and Cremer
et al., 1988, p 4 35 for details). Using equations (34) - (37), the forces and moments
of the plates can be obtained. Equilibrium requirements for the balance of forces
and moments at the plate junction lead to the following equation:

F.1 + F,, cos P, + EFi sin Ai = 0, (38)
i=2 i=2

n

YEF, =0 (39)
i=i

Is n

F., - F,, sinP, + YF cos P-=0, (40)
i-2 i-2

IMi =0. (41)
.)i

Equations (33) and (38) - (41) provide the necessary boundary conditions for the
solution of wave amplitudes. These equations are evaluated at the origin of the
co-ordinate system (i.e., x1, x,, x3 ....= 0). A standard computer routine which
handles a system of linear equations with complex coefficients may be used.
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2.2.2 Plate-beam junction (thick beam)

Figure 3 shows a schematic diagram of an infinite plate coupled to a thick uniform
beam. The thick beam assumption in the context of this report implies that no
incident wave is transmitted to the beam. Also, it is assumed that the beam
centroid coincides with the shear centre and x, is a principal axis. It is further
assumed that the boundary conditions can be applied to the origin of the co-
ordinate system ( the validity of this assumption is discussed in section 5.2).
Thus, the compatibility requirements for plate motions in this case are exactly the
same as for a plate-plate junction (equation (33)). However, the force and moment
balance equations ((38) -(41)) must be modified to allow for the torsional, bending
and inertia effects of the beam. For beams of high slenderness ratio (defined as
the ratio between the length and radius of gyration), the effects of shear
deformation and rotary inertia may be neglected (these effects have been
investigated by Langley and Heron, 1990) and the forces and moment balance
equations may be derived by the conventional beam theory.

Y
Y

Fzb Fz F,

M~b

Beam Z

Vb w

Ii Plate

U

Ub S Zb 0

Zb
Xb b

Figure 3: A plate - thick beam junction showing the displacements and junction forces
and moments.

At the junction, the sum of the forces and moments due to all plates may be
resolved along the beam co-ordinates xb, y, z, and expressed as the beam forces
and moment (see Figure 3):

N N

Fb = F., cosob -F., sin 0, + F,, cos(, -J, )+ F, sin(, - 6), (42)
i-2 i-2

14
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F,= F,, (43)

Fb =F., sin t,+ F,cospb -YF~1 sin(p, - ft) +YFz cos(p, -l0.), (44)
-=2 a-2

M6 = M,. (45)

The motions about the beam centroid ub, v. wb and 6b may be expressed in terms

of the elastic deformations of plate I:

ub = u cos ftb" w, sin Pb, (46)

Vb = V1, (47)

Wb = U, sin A.b+ w, COS [ b+ 01s, (48)

Oh= 0-, (49)

where Ob = angle between the beam and plate 1,
S = distance between beam centroid and the junction.

The equilibrium of forces and moments at the junction must allow for the
torsional, bending and inertia effects of the beam. Consider the balance of forces
in the xb direction, the beam force FXb is augmented by the shear force as a result of
beam bending in the x,-y plane (a similar argument exists for forces in the zb
direction). Summation of forces along the beam co-ordinates leads to the
following force balance equations:

-Fxb - Eblzb a4Ub /ay4 = mbC2 Ub 2 at 2 , (50)

yb= Mb2Vb /at 2 , (51)

-F EbI[3a4 Wb / ,y 4 = mb)2Wb /at,2 (52)

where mb = mass per unit length of beam,
E, = Young's modulus of beam,
10 = second moment of area of beam about axis xb,
l• = second moment of area of beam about an axis parallel to z. and

passes through the beam centroid.

The variation in plate rotation 0, along they - axis causes the beam to twist and
results in a torsional moment. Consider the equilibrium of moments about a line
parallel to the y - axis and passes through the beam centroid:

-Mb + FOS+Tb,a2 b /4 2 = b a2% 0/at, (53)

15
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where Tb torsional stiffness of the beam,

lb moment of inertia per unit length about beam centroid.

Equations (33) and (50) - (53) represent the boundary conditions for a system of
plates coupled with a thick beam. Again, these are sufficient to permit solution
for the wave amplitudes of interest.

2.3 Mathematical Modelfor a Thin Beam

Some engineering structures (e.g. ships, aircraft) quite often involve the use of
thin beams to reinforce plate elements. A thin beam in the context of this paper
implies that the beam thickness is of the same order as that of the plate element
and is therefore subjected to bending and in-plane waves. A schematic diagram
of the structure is shown in Figure 4. The analysis of this type of structures may
be carried out by assuming that the thin beam behaves as a finite plate with waves
travelling in both the positive and negative x - directions. Referring back to
equations (11) - (13), the solutions to wave motions of the finite plate in this case
must include the positive and negative roots. This results in eight unknown
complex wave amplitudes (instead of four unknowns as in the case of an infinite
plate). By denoting the web as the second plate in a plate-plate junction, the
expressions for bending and in-plane waves may be derived in a procedure
similar to those described in section 2.1:

I12 =I RL 2 / (kL2 /k)II4L2 exp(-jkRL2X2 )-L2 exp(jkRL2X2 ) (-

[sinIa/(kT2 /k)J[IT 2 exp(-jkRT2X2 )+, T2 exp(jkRT2X2 )j,

v2 -[sin(xc/(kL 2 /k)]JKL2 exp(-jkRL2X 2 )+ L2 exp(jkRL2X2 )A-

[RT 2 /(kT 2 / k)][4T2 exp(-jkRT2x 2 )-4T2 exp(jkRT2x 2 )],

U'= 41-2 exp(-jkR,",x, )+.1N,2 exp(-kRI\..'x, )+ C. exp(jkR,,x2 + (56)
5'.N2 exp(kR8.2x ).

The additional four unknowns in a plate - thin beam junction ,'aV, ý'JN2, ý.2 and
4T. represent waves that travel in the negative x2 - direction of the finite plate.
Four additional boundary conditions are thus required to solve the wave motions.
These boundary conditions may be obtained by considering the force and moment
balance at the end of the finite plate. Substituting equations (54) - (56) into (34) -
(37) and evaluating these equations at x, = L,, gives the forces and moment. For
the structural junction shown in Figure 4, the forces and moment must vanish at
the free end of the plate.

Figure 5 shows a typical reinforced plate structure used in naval ship
constructions. The stiffening beam in this case consists of a web and flange. For

the analysis of vibration transmission, the flange may be considered as another
finite plate attached to the web and the flange with the web junction analysed
using a similar procedure as previously described. Alternatively, if the flange is
thick compared with the web (say, or the order of twice the web thickness), one
may assume that the flange behaves as a thick beam attached to the web and the
analysis carried out in a procedure similar to those described in section 2.2.2.
Figure 6 shows the forces and moments at the flange - web junction. The force
and moment balance equations (evaluated at x, = LW) may be expressed as:

16



Fx2 =mfa 2u2 /at2 (57)

FY2 = mf a2 v2 /it
2 , (58)

F -aFlay = mMa2wf /at2 , (59)

M 2 + aM/Iay =a 202 at2 , (60)

where subscriptf represents the flange, and

iaFf /iay= Eff,I 4 W2 lOy 4 ,

aM, lay =aTya202 /ay 2.

Equations (57) - (60) represents the additional boundary conditions for the
solution of wave amplitudes.

ZI

X3  .•"- " - - - - - - "- Xl

~Z2

X2

Figure 4: Schematic diagram of a plate - thin beam junction.

Figure 5: Periodically stiffened panel.
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2 FzF. 2y

Figure 6: A flange - wenb junction sowging displacmntsforces and mments.

3. Transmission and Reflection Efficiencies

The above analysis solves the wave amplitudes of plate - plate and plate - beam
junctions and leads to the calculation of wave power. The wave power per unit
length of a junction subjected to normal waves (perpendicular to the junction)
may be expressed as the energy per unit area multiplied by the group velocity (see
Cremer et al., 1988 p 109). For oblique waves, the expression must be modified by
multiplying it with the cosine of the wave angle since it is the projected length of
the boundary line that effectively intercepts the wave. Figure 7 shows the
interception of an oblique incident wave for a plate - plate junction. Recall that
the incident wave has a unit amplitude, the power due to an incident wave at an
angle a is given by:

PINC = mI Oc.c cos a. (61)

Similarly, the transmitted/reflected power may be expressed as:

Pi = mi I to IO 2oc coS.D (62)

The transmission/reflection angle yi may be expressed in terms of the incident
angle a using Snell's law (equation (17)). The power expression thus becomes:

p•i =Miltl DiJ 0c,(klko,)Re[k•j/k)-sin 2 al, (63)

where m, = mass per unit area of plate i,
D = B, L or T depending on the wave type,
c., = group velocity of plate i,

= 2 q, for bending waves,
= c.I for longitudinal waves,
= cri for transverse shear waves.

-A



Incident wave

plate I !

Junction

Plate 2

Figure 7: Interception of an oblique incident wave at a junction.

Note that for bending waves, the transmitted or reflected power in a plate is
determined by the far field travelling waves only. The near field waves decay
exponentially along the direction x, and carry no time averaged power. Also, no
power is transmitted by a finite plate.

The transmission/reflection efficiency is defined as the ratio of the
transmitted/reflected wave power to the incident wave power and is a function of
the incident angle ct:

Fý (a) = PM / PNC, (64)

where q and r represent the wave type of the incident and generated waves
respectively, and i represents the carrier plate of the generated waves.
Conservation of energy requires that the sum of all transmission and reflection
efficiencies to be equal to one.

4. Coupling Loss Factor
The coupling loss factor used in SEA defines the amount of energy flow from one
element to the other. It can be shown (Lyon, 1975, p 91) that for two coupled sub-
systems, the power lost by sub-system I due to coupling to sub-system 2 is
proportional to the energy of sub-system I and may be expressed in terms of the
coupling loss factor as follows:

P12 -"wi1 (E), (65)

where<E1>, - time averaged energy of sub-system 1,
v112 = coupling loss factor between sib-systems I and 2.

19
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Consider an SEA system that consists of two coupled plates as shown in Figure 7.
If plate I carries a diffuse vibration field incident on the junction, the total power
transmitted to plate 2 can be obtained by multiplying the power of plate I with
the transmission efficiency and then average the results over the entire range of
incident angles (see Cremer et al., 1988, p. 426):

-/Z

P12 = (c 1 LC < Ei >/AI 2x) 11 (ct)cos oia.

=(cIL€ < E >1 IAX)o (a)d(sin o),

(66)
=(c,,L, <E, >/Alx)-t,0

where L, = coupling line length,
= mean transmission efficiency,

A1  = area of plate 1.

From equations (65) and (66), the coupling loss factor between two coupled plates
is given by:

'112 = (c,1 Lc /c•orAO)i., (67)

From the above considerations on coupling loss factor, it is evident that the mean
transmission efficiency t, is a useful parameter for characterising the wave
transmission properties of a junction subjected to an incident diffuse vibration
field. The mean transmission efficiency may be obtained by a numerical
integration procedure and incorporated into a computer program. The sample
calculations presented in the following section are based on mean transmission
efficiencies.

5. Applications to Ship Structural Junctions

5.1 Plate-Plate Junctions

Figure 8 shows a schematic diagram of a section of ship's structure which mainly
consists of plate joints. The mean transmission efficiencies for junctions A, B and
C were calculated by the mathematical model described in Section 2.2.1 and are
plotted in Figures 9, 10 and 1I respectively. In all three cases studied, it can be
seen that the significance of in-plane vibration in wave transmission increases
with frequency. For example, at 8000 Hz, about 10-15% of the incident wave
power is transmitted by in-plane vibration. Although in-plane motions are not
coupled efficiently to the sound field, they may propagate through the structure
and transform into bending motions at a structural discontinuity. Hence in-plane
moions may be considered as a flanking path to bending motions and, if that
Ranking path Is Ignored in the analysis, the results may lead to an
underestimation of the transmitted structure-borne noise.

20



75
12 mm

10 MM

Figure 8: Schematic diagram of a ship's section.

1.0
Plate 1 carres an kident bending wave
I - Bending wave in plate 2 4. Longitudinal wave in plate 3
2 - Bending wave in plate 3 5 -Transverse shear wave in plate 2
3 - Longitudinal wave in plate 2 6 - Transverse shear wave in plate 3

0111 6

3

0.01
100 1000 10000

Frequency, Hz

Figure 9: Wam power transmission for junction A.
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1.0

Plate 2 carries an incident bending wave

0.1 1 - Bending wave in plate 4
2 - Longitudinal wave in plate 4 3

I 3-Transverse shear wave in plate 4 O X2

0.01, _ ,__ __/

100 1000 10000

Frequency, Hz

Figure 10: Wave power transmission for junction B.

1.0
Plate 4 carries an incident bending wave
1 - Bending wave in plate 5 In-plane waves in plate 6
2 - Bending wave in plate 6 are negligible

I" 3 - Longitudinal wave in plate 5
"4 - Transverse shear wave in plate 5

,,-2

C

S.• ~~0.1"- " '
E
03
C3

0.01
100 1000 10000

Frequency, Hz

Figure 11: Wave power transmission for junction C.
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5.2 Plate-Beam Junctions

The mathematical models for a thick beam (Section 2.2.2) and a thin beam
(Section 2.3) coupled to thin plates were applied to the plate-beam junction shown
in Figure 12. Since the beam thickness chosen in this example is the same as the
plate, the beam would vibrate due to the incident wave and it is reasonable to
argue that the thin beam model would give a more accurate prediction of the
transmission efficiency. Figure 13 shows the bending wave transmission
efficiency of the junction calculated by both models. The thick beam model
predicts a low-pass characteristic of the plate-beam junction and underestimates
the transmission efficiency at frequencies above 500 Hz. The effect of resonant
bending frequency of the thin beam on wave transmission can be observed.

As a second example on plate-beam junctions, the beam thickness in Figure 10 is
increased to 20 mm. Figure 14 shows the calculated transmission efficiency.
Below 1 kHz, the agreement between the thick beam model and the thin beam
model is reasonable. At higher frequencies, the thin beam model predicts a higher
transmission efficiency, possibly due to the effect of plate resonance. It should be
noted that the mathematical models used in this report are based on a thin plate
theory and the assumption that the boundary conditions can be applied on the
beam/plate centreline. These assumptions may not be justified at high
frequencies where the cross sectional dimensions of the junction is not negligible
compared with the bending wavelength. Cremer et al. (1988, p 115) suggested
that the thin plate theory may be used if the bending wavelength is longer than
six times the plate thickness. For the present example, this converts to a
frequency of approximately 26 kHz. The effect of plate offset from the centreline
of a thick beam may be considered by modifying the compatibility and
equilibrium equations. This approach has been carried out and reported by
Langley and Heron (1990). Despite the assumptions used in the models, the
present analysis shows that the conventional heavy beam theory may lead to a
serious underestimation of the transmission efficiency when applied to thin beam
junctions.

6. Conclusions

Analytical methods for evaluating the transmission efficiency of structural
junctions have been presented. The mean transmission efficiency may be used to
identify and quantify vibration transmission paths in a junction. A study of the
mean transmission efficiency of plate junctions shows that the effect of in-plane
motions is significant in structure-borne noise transmission, especially at high
frequencies. For structural junctions that consist of a thin beam, the elastic
vibrations of beam plays an important part in wave transmission and should be
considered in the analysis of structure-borne noise.
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Figure 13: Bending wave transmission for a plate - thin beam junction.
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Figure 14: Bending wave transmission for a plate - thick beam junction.
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Appendix

List of Symbols

Ai area of plate i

B bending wave

CBec•IcTi bending, longitudinal and transverse shear wave
velocities of plate i

cgi group velocity of plate i

D subscript to denote bending (B), longitudinal (L) and
transverse shear wave (T)

EjEb,•E elastic modulii of plate i, beam and flange

<Ei> time averaged energy of sub-system i

FXi,Fyi,Fzi component of internal plate forces per unit length in
the x,, y and zi directions of plate i

hi thickness of plate i

I second moment of area of beam about axis xb

lzb second moment of area of beam about an axis parallel
to zb and passes through the beam centroid.

If second moment of area of flange about axis x2

JIbJf moment of inertia per unit length about longitudinal
centroidal axis of beam and flange

subscript to indicate plate/sub-system number
(i = 1, 2,3 ..... n)

j complex operator

k wave number of incident wave

ky y - component of incident wave number

ksX'kB, ksk x and y - components of wave numbers for bending.
longitudinal and transverse shear waves

kLykT,ekT,

kasfk,,kTky bending, longitudinal and transverse shear wave
numbers of plate i
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I

L longitudinal wave

iLC length of coupling line at a junction

SL. width of web

Mi internal bending moment per unit length of plate i,
the moment vector is in the y - direction

SM1 , M! moments per unit length about longitudinal
centroidal axis of beam and flange

mb,?m/P mass per unit length of beam and flange

mi mass per unit area of plate i

n number of plates in a junction

PINC power of incident wave

PDI transmitted or reflected wave power of plate i

P12  power lost by sub-system 1 due to coupling to sub-
system 2

q, r superscripts to indicate wave type of incident and
generated waves respectively

RBi,R i,RTi parameters to yepresent the cosine function of wave
angle for bending, longitudinal and transverse shear
waves of plate i as defined by equation (25)

RBNi parameter to represent the cosine function of wave
angle for the near field bending wave of plate i as
defined by equation (26)

S distance between the beam centroid and the junction

T transverse shear wave

TfTf torsional stiffness of beam and flange

t time

ui displacement of plate i in the x, - direction due to
transmitted or reflected waves

uL, uT displacement of plate I in the x - direction due to
incident longitudinal and transverse shear waves
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vi displacement of plate i in the y - direction due to
transmitted or reflected waves

VL, vT displacement of plate I in the y - direction due to
incident longitudinal and transverse shear waves

Wi displacement of plate i in the z, - direction due to
transmitted or reflected waves

displacement of plate I in the z - direction due to
incident bending wave

xi'y, zi system of co-ordinates of plate i

Xb,,Y,Zb system of co-ordinates of beam

a incident wave angle

angle between plate I and plate i

angle between plate I and beam

* velocity potential

"YB,'L'"Y wave angles of transmitted/reflected bending,
longitudinal and transverse shear waves

T112 coupling loss factor between sub-system I and 2

A, Poisson's ratio of plate i

0i angular displacement of plate i about the y - axis

,[(a) transmission/reflection efficiency as a function of the
incident wave angle, the efficiency is defined as the
ration of the transmitted/reflected wave power to the
incident wave power

In mean transmission/reflection efficiency

0 dcircular frequency

4Bi •8N AU t, complex wave displacement amplitudes for travelling
and decaying bending waves, as well as longitudinal
and transverse shear waves of plate i travelling in the
positive x, - direction

•, ,M ,•'L,, •, same definition as above but with waves travelling in
the negative x, - direction

W stream function
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